3 Types Of Web Application Architecture

Such terms as ”web app”, ”front-end architecture”, ”Web 2.0”, and ”HTML5 apps” have recently become trendy. Unfortunately these terms are often used in a misleading context which doesn’t consider the full specificity of implementation and usage of web app architecture. Today we’ll try to find out more about the types of web application architecture in the light of the latest web trends and key issues that matter to software owners.

We’ll outline 3 main types of web architecture and discuss their advantages and drawbacks for three points of view: software owner, software contractor (developer) and end user. There can be other types but they basically come down to these three as their subtypes.

First we’ll define a web application: it’s a client-server application – there is a browser (the client) and a web server. The logic of a web application is distributed among the server and the client, there’s a channel for information exchange, and the data is stored mainly on the server. Further details depend on the architecture: different ones distribute the logic in different ways. It can be placed on the server as well as on the client side.

It’s near to impossible to evaluate these completely different architectures impartially. But we’ll try to, using several criteria of evaluation:

User:
Responsiveness/Usability. Updates of data on pages, switching between pages (response time). Such qualities of user interface as richness and intuitiveness in use.
Linkability. Ability to save bookmarks and links to various sections of the website.
Offline work. Speaks for itself.

Developer:
Speed of development. Addition of new functional features, refactoring, parallelizing the development process between developers, layout designers, etc.
Performance. Maximum speed of response from the server with minimum consumption of computation power.
Scalability. Ability to increase computation power or disc space under increases in amounts of information and/or number of users. In case the allocated scalable system is used, one must provide data consistence, availability and partition tolerance (CAP theorem). It’s also worth noting that the case, when the number of features/screens of the client app is increased at the software owner’s request, depends on the framework and implementation rather than the type of web architecture.
Testability. Possibility and easiness of automated unit testing.

Software owner:
Functional extendability. Adding functionality within minimal time and budget.
SEO. Users must be able to find the application through any search engine.
Support. Expenses on app infrastructure – hardware, network infrastructure, maintenance staff.
Security. The software owner must be sure that both business data and information about users are kept secure. As the main security criterion we’ll consider the possibility of changes in functionality of app behavior on the client side, and all associated risks. Standard dangers are the same for the compared architectures. We do not consider security on the ‘server-client’ channel, because all these architectures are equally exposed to break-ins – this channel can be the same.
Conversion: site – mobile or desktop application. Possibility to publish the application on mobile markets or to make a desktop application out of it with minimal additional costs.

Some of these criteria might seem inaccurate, but the purpose of the article is not to show what’s good and what’s bad. It’s more of a detailed review that shows the possible options of choice.

Let’s outline three main types of web applications according to the roles performed by the server and the client browser.

Type 1: Server-side HTML

The most widespread architecture. The server generates HTML-content and sends it to the client as a full-fledged HTML-page. Sometimes this architecture is called ”Web 1.0”, since it was the first to appear and currently dominates the web.

Responsiveness/Usability: 1/5. The least optimal value among these architectures. It’s so because there is a great amount of data transferred between the server and the client. The user has to wait until the whole page reloads, responding to trivial actions, for example, when only a part of the page needs to be reloaded. UI templates on the client depend directly on the frameworks applied on the server. Due to the limitations of mobile internet and huge amounts of transferred data, this architecture is hardly applicable in the mobile segment. There are no means of sending instant data updates or changes in real time. If we consider the possibility of real-time updates via generation of ready chunks of content on the server side and updates of the client (through AJAX, WebSockets), plus design with partial changes of a page, we’ll go beyond this architecture.

Linkability: 5/5. The highest of the three, since it’s the easiest implementable. It’s due to the fact that by default one URL receives particular HTML-content on the server.

SEO: 5/5. Rather easily implemented, similarly to the previous criterion – the content is known beforehand.
Speed of development: 5/5. This is the oldest architecture, so it’s possible to choose any server language and framework for particular needs.

Scalability: 4/5. If we take a look at the generation of HTML, under the increasing load comes the moment when load balance will be needed. There’s a much more complicated situation with scaling databases, but this task is the same for these three architectures.

Performance: 3/5. Tightly bound to responsiveness and scalability in terms of traffic, speed etc. Performance is relatively low because a big amount of data must be transferred, containing HTML, design, and business data. Therefore it’s necessary to generate data for the whole page (not only for the changed business data), and all the accompanying information (such as design).

Testability: 4/5. The positive thing is that there’s no need in special tools, which support JavaScript interpretation, to test the front-end, and the content is static.

Security: 4/5. The application behavior logic is on the server side. However, data are transferred overtly, so a protected channel may be needed (which is basically a story of any architecture that concerns the server). All the security functionality is on the server side.

Conversion: site – mobile or desktop application: 0/5. In most cases it’s simply impossible. Rarely there’s an exception (more of exotics): for example, if the server is realized upon node.js, and there are no large databases; or if one utilizes third-party web services for data acquisition (however, it’s a more sophisticated variant of architecture). Thus one can wrap the application in node-webkit or analogous means.

Offline work: 2/5. Implemented with a manifest on the server, which is entered to HTML5 specifications. If the browser supports such a specification, all pages of the application will be cached: in case the connection is off, the user will see a cached page.

Type 2: JS generation widgets (AJAX)

Evolved architecture of the first type. The difference is that the page, which is displayed in the browser, consists of widgets (functionally independent units). Data are uploaded to these widgets through AJAX query from the server: either as a full-fledged chunk of HTML, or as JSON, and transforms (through JavaScript-templating/binding) into the content of the page. The option of uploading chunks of HTML excludes the necessity of using JavaScript-MV*-frameworks on the client side; in this case something simpler can be used – for example, jQuery. By lowering interactivity we boost the development speed and make functionality cheaper and more reliable.

The foremost advantage is that updates from the server arrive only for the part of the page requested by the client. It’s also good that widgets are separated functionally. A particular widget is in charge of a part of the page; changes in a part will not affect the whole page.

Responsiveness/Usability: 3/5. The volume of transferred data for a part of a page is smaller than for the whole page, that’s why responsiveness is higher. But since a page is a set of widgets, the applicable UI templates in a web application are limited by the chosen UI framework. Cold start (the first full loading) of such a page will take a little longer. The content, which is fully generated and cached on the server, can be instantly displayed on the client; here time is spent on getting the data for the widget and, as a rule, on templating. At the first visit the website will not be that quick to load, but further it will be much more pleasant in use, if compared to sites based on the architecture of the first type. Also it’s worth to mention the possibility of implementation of ”partial” loading (like it’s done on yahoo.com).

Leave a Reply

Your email address will not be published. Required fields are marked *